Blog de robótica e inteligencia artificial

7/31/2014

¿Cómo funciona el nuevo KERS y el sistema brake-by-wire?

Retomo en el blog la costumbre de artículos técnicos de F1, justo ahora que hemos pasado el ecuador de la competición. Probablemente incluso la gente poco o nada aficionada a esta competición haya escuchado que este año ha habido un cambio grande en los motores: ¡YA NO HAY MOTORES!

Lo que se da ahora en la competición son unidades de potencia (Power Units), que están compuestas por un motor de combustión con turbocompresor, dos partes de recuperación de energía (MGU-H y MGU-K) y unas baterías. Esta nueva configuración del motor tiene sus consecuencias en la normativa en cuanto a penalizaciones por cambiar partes de motor, pero eso no nos interesa ahora.

De manera muy simple, el antiguo KERS es el equivalente a MGU-K, el cual consigue la energía a partir de la frenada del coche. El MGU-H consigue la recuperación de energía a partir del turbocompresor. Precisamente, lo que quiero en este artículo es explicar cómo se genera esa energía en el MGU-K. Es decir, nos deberían de surgir estas preguntas (aunque no todas estén correctamente planteadas):

- ¿Qué energía de la frenada usamos?

- ¿En la frenada, no se consume menos energía que en la aceleración?

- ¿Cómo se transforma el calor de la frenada en electricidad?

Vamos por partes:



El MGU-K puede funcionar como generador o motor, las cuales son opciones contrarias. En un caso, ese aparato genera energía y en el otro la consume. En la frenada concretamente, funciona como generador. La unidad de potencia y la parte eléctrica es de los mayores secretos de las escuderías durante cada año, pero veamos cómo trabaja:

La clave es que el MGU-K sólo se conecta al eje del cigüeñal del Formula1 durante la frenada. En otros momentos no hay unión mecánica. El MGU-K podemos considerarlo como un motor eléctrico: estos elementos normalmente están compuestos por un rotor y un estátor (ambos concéntricos).


El rotor es un elemento giratorio mientras que el estátor es fijo. El rotor está formado por un entramado de bobinas que atraviesan los campos magnéticos de los imanes que hay colocados a lo largo del interior del estátor, y como cualquier estudiante de Física básica debería saber, un conductor que atraviesa campos magnéticos variables es atravesado por una corriente. Es decir, el rotor estaría generando una corriente eléctrica y ésta sería la que se almacene en las baterías del Formula1. Como podéis ver en imágenes reales de este elemento, sí que se parece al dibujo superior:



El tren trasero del Fórmula hace girar el rotor: es decir, el rotor aporta un par resistivo y ayuda a acortar la frenada del Formula1.

Hasta aquí hemos explicado brevemente el MGU-K cómo recupera la energía de frenada. Pero su influencia en la frenada no ha terminado, ya que ahora hay que hablar del sistema brake-by-wire. Éste hace referencia a que no existe unión mecánica entre el pedal y la presión que se ejerce sobre los discos de freno, sino que la presión de frenado se calcula electrónicamente. De esta manera, una pisada del piloto no frenará lo mismo siempre, sino que variará. ¡Vaya lío!

Vamos a intentar decirlo más claro: al pisar el pedal, se genera una pequeña señal eléctrica que llega a la centralita del vehículo. En función de la presión de frenada, la velocidad, etc, la ECU calcula un tipo de presión que la bomba de líquido de freno realizará. Y ahora viene la parte en la que relacionamos con el sistema de recuperación de energía:

La normativa FIA establece claramente el límite de energía que se puede recuperar por vuelta mediante el MGU-K. Por lo tanto, hay un límite por el que este elemento puede funcionar como generador. Mientras el MGU-K no haya llegado al límite de su energía, hay una válvula (comandada por la ECU) que se encarga de reducir la presión de frenado. Sin embargo, cuando se ha alcanzado el limite impuesto por la FIA esta válvula ya no funciona, y los pilotos al frenar podrán ejercer una mayor presión, lo cual puede hacer que bloqueen las ruedas traseras con mucha más facilidad. 

A todo esto, hay que añadir el repartidor de frenada del que ya hablamos hace un tiempo por aquí. No es seguro, pero es posible que esto de que cada vez frenamos con una fuerza distinta sea la razón principal para el aparatoso accidente que hubo en la salida de la primera carrera de la temporada, donde Massa se comió a un monoplaza al llegar a la primera curva.

Por último, aquí tenéis un vídeo de Brembo explicando el sistema de frenado de este año:



Fuentes
 
 



Comparte:

0 comentarios:

Publicar un comentario

Sígueme en redes:

descripción descripción descripción

En mi mesilla

Blog Archive